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SUMMARY 

Hydroxyapatite chromatography with small loads carried out with a linear 
gradient of competing ions has been investigated theoretically on the basis of the 
classical theory of  adsorption chromatography for the case when molecules are 
adsorbed on to a single type of crystal site. By using this result, the experimental 
chromatography of lysozyme has been re-examined and the limit of the resolving 
power of the hydroxyapatite column is discussed. 

INTRODUCTION 

In our previous papers 1'z, a theory of  hydroxyapatite (HA) chromatography 
with small loads was developed for the case when the elution is carried out with a 
linear molarity gradient of competing ions. It was shown that the elution molarity 
of sample molecule can generally be expressed as a function of  a parameter s, defined 
as the product of  the column length, L, and the slope, g, of the gradient of competing 
ions. The experimental results for several proteins are explained reasonably well by 
this theory and the values of  parameters such as the number of crystal sites covered 
by an adsorbed molecule and the adsorption energy per molecule were estimated 
through the analysis of  experimental data 1,z. This theory is based on the assumptions 
of  (a) instantaneous equilibrium of  the adsorbed phase and solution and (b) no 
longitudinal diffusion of molecules on the column, as in the classical theory (see 
below). However, it also involves the further assumption that the width of  the band 
of the moving solute on the column is very small, which means that no information 
about the shape of  the chromatographic peak can be obtained through the theory. 

On the other hand, a general differential equation that describes the develop- 
ment of solute on the column on the basis of  only assumptions (a) and (b) was given 
over 35 years ago by Wilson 3. Subsequently, a theory of adsorption chromatography 
based on this equation and a slightly modified version 4 was further developed by 
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De Vault 4, Weiss 5 and others for the case when the elution is carried out with a 
solvent with a constant composition. Recently, this classical theory was reconsidered 
by Kawasaki for the case of small loads and it was shown that the general asymmet- 
rical shape of the experimental chromatogram observed in stepwise elution can be 
explained satisfactorily if a boundary condition for the differential equation given in 
the classical work is modified (see Appendix). 

In this paper, HA chromatography with small loads when the elution is carried 
out with a linear gradient of competing ions and when molecules are adsorbed on to 
a single type of crystal site 1 is considered on the basis of the classical equation and the 
experimental result obtained for lysozyme in earlier work 6 is discussed. 

T H E O R E T I C A L  

It is possible to write the differential equation governing the chromatographic 
process on the column given by Wilson 3 and modified by De Vault 4, for the case of 
a single molecular species, as 

OC aC a Z 
a ~  + ( W  + ~ - - )  • a = 0  (1) 

where g is the proportion of the effective surface of HA occupied by adsorbed solute, 
being equal to unity in the saturated state, as a function of the elution volume, V, and 
position, L, on the column expressed as the distance from the top of the column; 
a is the pore volume per unit length of the column, i.e., a = ~V/6L;  and C is the 
concentration of solute in solution or mobile phase, as a function of V and L, defined 
as  

B C 1 ~  "Z (2) 

where B is the ratio of the amount of solute in solution to the total amount in a 
column section. It should be noted that eqn. 1 is valid even for each component in a 
mixture when the total load is small, as the density of molecules on the column must 
be small. 

In the case when the elution is carried out with a linear activity gradient of 
competing ions, it is covenient to rewrite eqn. 1 by using the following parameters: 

d = 22"e ~/kT (3") 

and 

dA 
G = a "  d--~ (4) 

s = a . L  (5) 

* In an earlier paper t, A was written as A~. 
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where 2z is the absolute activity of competing ions; --82(62 ~ 0) is the adsorption 
energy of a competing ion to one of the adsorption sites of HA; and G is a constant 
representing the slope (per unit length of the column) of the activity gradient of 
competing ions. It should be noted that, if the activity of competing ions is pro- 
portional to the molarity, m, then A can be written by using a proportionality 
constant ~c~' (see eqn. 14 in ref. 1) as 

A = q:,'.m (6) 

and that G and S are related to the parameters g and s in the earlier paper 1 by 

6 = q; .g  (7) 

and 

S = ~/.s (8) 

Now, eqn. 1 can be rewritten as 

OC OC 0 X 
0 ~  + ~ + 0A -- 0 (9) 

The parameter B (see eqn. 2) is related to A by 

B 
1 - -  B - -  q - '  " ( A  + 1) x' ( 1 0 )  

(see eqn. 1 in ref. 1) where x' is the number of sites of HA on which competing ions 
cannot be adsorbed owing to the presence of an adsorbed macromolecule and 

XE 3 
log q --  k T  + log (f13 a) (11) 

where x is the number of adsorption groups per macromolecule that can react with 
sites of HA; --e3(e3 > 0) is the adsorption energy of an adsorption group of macro- 
molecule to one of the sites of HA; and a and f13 are constants related to the symmetry 
of the molecule and to the properties of the column, respectively. Therefore, eqn. 9 
becomes 

0 ~  + l + q " (A  + l) -x '  • - -  • ' 1) . . . .  1 OA qx'  (A~-  • C (12) 

which is a linear first-order partial differential equation for C as a function of S and A. 
In order to solve eqn. 12, the corresponding characteristic curve 

dA dC 
dS = 1 + q • (A + 1) -x' qx'  • (A  ÷ 1) . . . .  1-C (13) 

has to be considered. Integrations of the left- and the right-hand side equalities in 
eqn. 13 give 

1 
/ £ 1 :  x' " l °g{1 + q - I  . (A ÷ 1) x ' } - S  (14) 

and 

Kz = C-[1 -- q . ( A  ÷ 1) -x'] 

Z'[1 + q - ~ . ( A  + 1) ~'] (15) 



274 T. KAWASAKI  

respectively, where/(1 and K2 are integration constants and an approximation 

( a ' +  1) x' ~[(A~+[I) x'+l (16) 

has been used for the calculation of eqn. 14. Eqn. 16 is a good approximation when 
A or m (see eqn. (6) is small. Now, the general solution for eqn. 12 can be expressed as 

F (xl--7 - .  l o g ~ -  S, z.Q ) ----0 (17) 

in which 

.(2-- z + C  _ 1 + q - l . ( A +  1) x' (18) 
g 

is the ratio of the total amount of macromolecules to that adsorbed in a column 
section and F is any function. Eqn. 17 can be rearranged to 

1 ( I  ) 
Z = ~ ' P  ~ ' l o g O - - S  (17') 

in which P is an arbitrary function. 
Now, in order for the function P to be determined, boundary conditions for 

eqn. 17' have to be considered. It is evident that the width of the chromatogram is 
much larger than the column length, both when the slope of the gradient of competing 
ions is extremely small and when the column is extremely short or, in general, when 
the value of the parameter S (see eqn. 5) is very small. In this case, the total interstitial 
volume of the column is much smaller than the total volume of the eluent in which 
macromolecules are involved, which means that the loss of macromolecules from the 
column when a solution with a volume the same as that of the column interstices is 
eluted is virtually equal to the total amount of macromolecules that exist in the inter- 
stitial liquid of the column. Therefore, we can write 

dC d Z [ \ 
- -  ~ d [V/(aL°)]  + d [V/(aL°)] ) = C (19) 

where L ° is the length of the column and V / ( a L  °) is the elution volume measured in 
such units that the total interstitial volume of the column is equal to unity*. Eqn. 19 
can be rewritten by using A instead of V and by introducing the parameter 

6S  = GL  ° (20) 

as  

- -TA - +  = ~ s  

* It should be noted that the physical meaning o f  eqn. 19 is similar to that for eqn. 1 in ref. 7. 
As  V in eqn. 1 in ref. 7 means V/(aL °) in this paper, eqn. 19 can be rewritten in terms of  the symbols  
in ref. 7, by using eqn. 2, as 

d 1 - -  " Z dz  B 

--  d + d V  = 1 - - B  "X (19a) 
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The integrat ion of  eqn. 21, with the approximat ion  (cf., eqn. 16) 

(A ~- 1) x ' - I  ~-~ (A + 1) x' 

gives 

(22) 

( 1 )  
Z = Z * ' D - -  1 + ~  (23) 

where Z* is the init ial  value of Z and for the initial  value, .Q*, of O it has been assumed 

that  

D* = 1 + q - l . ( A *  + 1) ~' ~ 1 + q-1 ~ 1 (24) 

A* being the init ial  value of A. Eqn. 24 is a reasonable assumpt ion  as the concen- 
t rat ion of the competing ions is usual ly small  (or virtually zero) in the initial  state, 
i.e., A *  << 1 and  as, in the case of a "retained" molecule, its adsorpt ion  energy must  
be so large that  virtually all molecules are in the adsorbed state in the absence of  
competing ions, i.e., q-1 << 1 (see eqn. 11 and also ref. I). I t  can be tested that  eqn. 23 
fulfils in the range of  the approximat ions  in eqns. 22 and 24 a conservat ion condi t ion:  

oo 

l C d V  = Sg* Z* aL°  (25) 

where it is evident  that  the r ight-hand side of eqn. 25 shows the total  amoun t  of the 

sample loaded. 
It  can be considered that  eqn. 23 is a boundary  condi t ion  that  eqn. 17 or 17' 

has to satisfy when S - +  0. Another  condi t ion  is that  

Z = 0 (26) 

when A = A* ,  i.e., .Q = .Q* = 1 (see eqn. 24), and w h e n L  > 0* or, more generally, 
S > 0. Unde r  these condit ions,  eqn. 17' becomes 

(27) 
= .If Z 0 ( . S  > T " log / 

which, however, is different from eqn. 1 in ref. 7, i.e., the first term of the left-hand side of eqn. 19a is 
lacking in eqn. 1 in ref. 7. As this term expresses the change in the amount of macromolecules in so- 
lution, it can be said that eqn. 1 in ref. 7 and eqn. 19a (or eqn. 19) correspond to the continuity equa- 
tion proposed by Wilson (eqn. 3 in ref. 3) and that modified by De Vault (eqn. 1 in ref. 4), respectively. 
However, eqn. 19a reduces to eqn. 1 in ref. 7 when the absolute value of the adsorption energy per 
macromolecule [i.e., xe3 or x'~e3 (see ref. 8)] is infinity, which is the case in ref. 7. This can be under- 
stood by the fact that, when x'~ea -- 0% the chromatography is carried out independently of the param- 
eter/~3 (see eqn. ll). which is proportional to the ratio of the total effective surface area of HA crys- 
tals to the interstitial volume in the column section (see eqn. 31 in ref. 8). Thus, the chromatography 
is carried out only due to the decrease in the adsorption capacity (denoted by Z' in refs. 7 and 8) of 
HA crystals with the increase in A (proportional to y in refs. 7 and 8) and the excess of macromole- 
cules that cannot be adsorbed on to the crystal surfaces is in solution (see refs. 7 and 8), which means 
that the chromatography depends only on the change in the amount of the adsorbed molecules and 
that the first term of the left-hand side of eqn. 19a is unnecessary. 

* L > 0 can be written more precisely as L > L °. However, L ° should be virtually equal to 
zero in the case of small loads. 
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or  

• .(2 • exp -- ~ -  • (-Z- log-Q -- S 1 
X' 

1 
(27') 

which gives the theoretical chromatogram (see Figs. 2 and 3). It can be verified that 
eqn. 27' fulfils another conservation condition: 

f o0 
® O z a d L  = g2*Z*o~L ° (28) 

where it should be recalled that the right-hand side of eqn. 28 is the total amount of 
the sample loaded and £2Za on the left-hand side shows the total amount of solute 
per unit length of  the column. It should be noted that the integration of eqn. 28 is 
carried out for a fixed value of V, and therefore of A (see eqn. 4), i.e., • (see eqn. 18), 
and that the range of the integration has been taken as (--c~v, c~v) instead of (0, c~) 
because, in the latter calculation, the amount of solute that is still in the top column 
section L ° is not integrated• 

As eqn. 27' is a discontinuity solution to eqn. 12, it is important to discuss the 
relationship between the S and A values, S and A, at which there is the discontinuity 
of the C value• This relationship is given by 

1 . log ~ (29) 
x' 

(see eqn. 27'), where 

= 1 -}-q-~'(A ÷ 1) x' 

If q-~ '(A + 1) x' is small, eqn. 29 reduces to 

(30) 

1 (A + 1) x' (31) 
S ~-  q x  ~ 

Further, if the elutien molarity, melu, is defined as the molarity of competing ions at 
which the discontinuous part of the chromatographic peak, i.e., the sharp leading 
boundary of it (see Figs. 2 and 3) appears, we have 

lJ = ~'me~u (32) 

(see eqn. 6) and, writing the s value (see eqn. 8) that corresponds to the S value simply 
as s, eqn. 16 in the earlier paper ~ can be obtained. 

RELATION TO EXPERIMENTS 

The points in Fig. 1 are a reproduction of Fig. 6 in an earlier paper 6, namely, 
the experimental plots of the reduced standard deviation (to column diameter = 1 cm), 
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Fig. 1. Points reproduced from Fig. 6 in ref. 6, i . e . ,  the experimental plots of  the reduced standard 
deviation (to column diameter = 1 cm), a (ml), of the chromatographic peak of  lysozyme as a func- 
tion of  the column length, L (cm), for three different values of  the slope, g(~ +~, of the molarity gradient 
of competing ions, i .e. ,  potassium ions in the buffer. Values ofg(K+~: O and D, 1.2-1.4.10 -3 M / c m ;  
• and m, 4 .0-4 .9 .10 -4 M / c m ;  Z~, (~ and  ~1, 3 .5-3.8.10 -2 M i c r o .  The point indicated by an arrow 
corresponds to the experimental chromatogram in Fig. 2. The three curves are theoretical curves 
calculated through eqn. 27' assuming that 6 S  - -  0.005, corresponding to three experimental values 
of g~K+j. To simplify the calculation, the half-width, a', of  the chromatographic peak at half of the 
maximum height has been considered instead of  ~. These two values must be approximately equal. 

a(ml), of the chromatographic peak of lysozyme with small loads as a function of 
the column length, L (cm), for three different values of the slope of the molarity 
gradient of competing ions. The curves in Fig. 1 are the theoretical curves that 
correspond to the three slopes of the gradient calculated through eqn. 27'. In order 
to simplify the calculation, the half-width, a', of  the chromatographic peak at half 
of the maximum height has been considered instead of a. These two values must be 
approximately equal. For the calculation of the curves, it was taken into account that 
lysozyme is adsorbed only on to P crystal sites, that it competes only with potassium 
ions in the phosphate buffer, that x' = 10, that log q = 6.4, that qY ~ 5.0 and that 
the ratio of  the interstitial volume of the column section to the total packed crystal 
volume is 0.8 (see refs. 1 and 9), and 6S ~ 0.005 (see eqn. 27') was assumed in order 
to have a best fit with the experiment (see Discussion). It can be seen in Fig. 1 that 
the theory explains fairly well the facts that, when the slope of the gradient is steep, 
a decreases rapidly in the range of short column lengths, that the decrease stops at 
short column lengths and that the decrease in a is less rapid when the gradient is 
small. The increase in a that takes place after having first decreased remains unex- 
plained, however. It may be due, at least partially, to the longitudinal thermodynamic 
diffusion of  macromolecules on the column (which is not taken into account in the 
theory). As however, the shape of the experimental chromatogram is virtually inde- 
pendent of the flow-rate, the increase in a may mainly be due to the heterogeneity in 
the flow-rate in different parts of a column section (see Discussion). 
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The solid and the broken lines in Fig. 2 are the experimental chromatogram 
corresponding to the point indicated by an arrow in Fig. 1 and a theoretical chro- 
matogram calculated through eqn. 27' as a function of the molarity of potassium ions 
in the buffer, respectively. For the calculation of the theoretical curve, it was assumed 
that ~S = 0.005, 9)' = 5.0, x' = 10, log q = 6.4 and ~/q0' = gL = 3.818- 10 -a, where 
3.818.10 -a is the value for the experimental point indicated by the arrow in Fig. 1. 
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Fig. 2. Plots of the experimental chromatogram corresponding to the point indicatedby an arrow in 
Fig. I (solid line) and the theoretical chromatogram (broken line) calculated through eqn. 27' as a 
function of the molarity of potassium ions. The actual reduced elution volume (to column diameter 
= 1 cm) for the experimental chromatogram is also shown on the abscissa. The value of cr in Fig. 1 for 
the experimental chromatogram has been calculated assuming that the base line is represented by the 
line . . . . . . .  

The theoretical chromatogram is drawn so that the maximum height would be about 
equal to that for the experimental peak. It can be seen in Fig. 2 that the shape of the 
experimental chromatogram, with considerable tailing, is fairly well explained by the 
theory. However, the leading boundary of the experimental chromatogram is less 
sharp than in the theoretical case, which may also be due mainly to heterogeneity in 
the flow-rate and slightly to the longitudinal thermodynamic diffusion of  molecules 
(see Discussion). It can also be seen in Fig. 2 that the elution of  the theoretical peak 
is slightly delayed, which can be considered to be due to the approximation of eqn. 16. 
In fact, the mean part of the theoretical chromatogram has to be eluted at 0.11 M 

0 0'05 0.'10 0.'15 

Fig. 3. Example of the calculation of the theoretical chromatogram through eqn. 27' when ~1~" is 
very small 
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according to a more precise approximation (eqn. 15 in ref. 1; see also Discussion). 
It should be noted, however, that the difference in the elution molarities between the 
experimental and the theoretical chromatograms is in the range of  the experimental 
error (see Fig. 2 in ref. 1). 

Fig. 3 shows another example of the theoretical chromatogram when the value 
of S/q~' is very small (S/q~' = 5.10-4). In this case, the chromatogram has a maximum 
height at its centre. 

DISCUSSION 

As mentioned in Relation to experiments, the theory does not explain why 
the width, a, of the experimental chromatogram increases after having first decreased 
with the increase in the column length, L (see Fig. 1). It should be recalled, however, 
that the theory developed in ref. 1 explains reasonably well the experimental relation- 
ship between the elution molarity, me~u, and the parameter s for all points in Fig. 1 
(see Fig. 2 in ref. 1). This theory involves the assumption that the width of the chro- 
matogram is negligibly small (see Introduction), but it describes the relationship 
between melu and s more precisely (i.e., without using eqn. 16) than the present 
theory. As the other assumptions involved in the theory in ref. 1 (instantaneous equi- 
librium and no longitudinal diffusion, see Introduction) are also the basis of the 
present theory, there must actually exist a factor that has not been taken into account 
in the present theory and that concerns only the shape or the width of the chromato- 
graphic peak. As the shape of the actual chromatogram when the column is long is 
generally rather symmetrical 1°, this factor must broaden the chromatographic peak 
symmetrically. The possibility that the broadening of a is due mainly to the longi- 
tudinal thermodynamic diffusion of molecules can be discounted as the shape of the 
chromatographic peak is virtually independent of  the flow-rate. It  can be suggested 
that the increase in a is due mainly to the heterogeneity in the flow-rate in different 
parts of the column section, as the preparation of HA crystals is usually very hetero- 
geneous (see Figs. A1 and A2 in Appendix II in ref. 11) and it is difficult to pack the 
crystals homogeneously enough in the column. According to this hypothesis, the fit 
between theory and experiment must be satisfactory when the column is short. The 
good fit may be obtained also because of  the increase in the precision of the approxi- 
mation of eqn. 16 when the column is short, as molecules are eluted at a small value 
of m (see Fig. 2 in ref. 1), i.e. A (see eqn. 6) when s is small or when the column is 
short*. 

Let us recall again that one of the basic assumptions of the theory is that the 
longitudinal diffusion of macromolecules is negligible. Although this assumption 
seems valid as the shape of the chromatographic peak is hardly influenced by a 
change in the flow-rate, it has no validity if the interior of a thin enough section of 
the column is considered. This means that the fundamental equation, eqn. 1 or 

* As eqn. 16 does not give a good approximation when the column is long, one cannot eliminate 
the possibility that the theoretical value or' does not increase with an increase in L because of the rough 
approximation of eqn. 16. Because, however, the activity of competing ions is generally higher in 
the rear part of the chromatographic peak than in the front part, it is impossible that the Rr value 
(see ref. 1) in the front part of the peak is larger than the value in the rear part. This means that an 
increase in tr" with increase in L is impossible. 
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eqn. 9, has no validity in the interior of  the thin column section. It is evidently 
impossible for a thin column section to be divided into a large number of sub-sections 
through which the transport of molecules is carried out smoothly, as the movement 
of molecules in the thin section must essentially be random, caused primarily by 
molecular diffusion, even though molecules are transported, on average, in the 
direction of the flow. Similarly, if the slope of the gradient of competing ions is small, 
i.e., the difference in concentration of the ions at the top and the bot tom of the 
column is always small enough, then the concentration of macromolecules must 
essentially be independent of the position on the column. In this case, if there is a 
slight difference in molecular concentrations between the top and the bot tom of the 
column, provided there is no molecular diffusion, there must be no difference in 
molecular concentration because of molecular diffusion. It  should be emphasized, 
however, that the assumption of no longitudinal diffusion is still valid when the width 
of the chromatographic peak is large, as the effect of molecular diffusion is offset in 
the interior of the chromatographic peak. Finally, it should be pointed out that 
another basic assumption, i.e., equilibrium between the adsorbed phase and solution, 
is reasonable, again because of the lack of dependence of the shape of the chro- 
matogram on the flow-rate, but that the equilibrium is possible only as a result of 
molecular diffusion. 

Let us consider chromatography with small loads. In this case, the width L ° 
(see eqn. 20) of  the initial band of macromolecules on the top of the column must be 
very small, so the movement of molecules in the interior of the top section, L °, must 
essentially be random. Further, the value o f L  ° must be independent of  the load when 
it is small enough, as it is almost impossible to decrease L ° to a value less than some 
minimal value because of molecular diffusion (perhaps occurring mainly in the 
loading process). Fig. 4 in ref. 6 gives experimental support to this statement, as it 
shows that the width, ~r, of the experimental chromatogram approaches a finite value 
when the load tends to zero. It  is evident that the width of the chromatogram is 
determined by L ° and that the width decreases, in general, with a decrease in L °*. 
It is also evident that the effect of the interaction between macromolecules is negli- 
gible for a small enough load. On the other hand, if G is smaller than some minimal 
value, the desorption of molecules in the interior of  the initial band must be carried 
out independent of  the position on the band, also because of molecular diffusion; it 
has already been pointed out that the concentration of macromolecules must be 
independent of  the position on the column if G is small enough. Hence the reason 
why the parameter  6S (see eqn. 20) is a finite constant for a small enough load can 
be understood (see Fig. 1). I t  can be said that 6S is a parameter that indicates the 
limit of  the resolving power of  the column. 

APPENDIX 

In connection with the theory developed in the text, it is of  interest to reconsider 

* It should be noted that the heterogeneity in the flow-rate in different parts of the column section 
gives the same effect as the longitudinal thermodynamic diffusion of molecules, it is perhaps this type 
of "diffusion" rather than the thermodynamic diffusion that determines mainly the value of L °, as the 
width of the experimental chromatogram is virtually independent of the flow-rate or the time used for 
the chromatography. 
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the classical Wilson, De Vault and Weiss theory 3-5 (which can be applied to general 
adsorption chromatography when the elution is carried out with a solvent with a 
constant composition) for the case of  small loads. We shall show that a boundary 
condition for the fundamental equation, i.e., eqn. 1 or eqn. A1 given by these authors, 
cannot be applied to the case of small loads and that, if it is modified, an asymmetrical 
shape of the chromatogram with a sharp leading boundary and considerable tailing 
is obtained, independent of the type of adsorption isotherm for the solute, as only 
the initial slope of this isotherm is of  importance in the case of  small loads. 

The fundamental equation (eqn. 1) can be written for convenience as 

OC OC OQ 
a T  + a • ~ F -  + 0 v  - 0 ( A I )  

in which C is now the amount of solute per unit volume of solution and Q is the 
amount of solute adsorbed per unit length of the column. Writing the adsorption 
isotherm of a solute on the adsorbent as I(C), Q can be expressed as 

Q : MI(C) (A2) 

where M is a positive constant. Eqn. A1 can be rewritten as 

OC OC 
O--L ÷ [a + MI'(C)] • OV -- 0 (A3) 

where I '  is the first derivative of L The general solution for eqn. A3 when the com- 
position of the solvent is constant is given by 

C : q ~ { V -  L.  [a + MI'(C)]} (A4) 

in which ¢ is an arbitrary function. 
Now, let us assume that a very small amount of the sample solution is loaded 

on the column and that a band with a small width, OL, of  adsorbed molecules is 
formed at the top of the column. It can be considered that the movement  of molecules 
in the interior of  the band 6L is random in any chromatographic process, as 6L is 
small (see text), and that the amount, &o, of  molecules on the top of the column 
decreases according to the equation 

d (6o~) _ C (A5) 
dV 

As 

c3~o ~- Ca~3L + Q6L -- [aC + MI(C)]6L 

eqn. A5 can easily be integrated when 

I (C) -~  ~C (A6) 

where ~ is a positive constant and 

[ 1 
C = C * e x p  --  ( a +  M ~ ) . 6 L  • V] (A7) 
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is obtained, in which C* is the initial concentration of solute in solution. The assump- 
tion of a linear adsorption isotherm (eqn. A6) is reasonable in the case of small loads 
because the density of the initial band must be small owing to molecular diffusion. 
It is also reasonable to consider that 8L has a finite value virtually independent of 
load if it is small enough (see text)*. It can be tested that eqn. A7 fulfils a conservation 
condition 

o0 

o C d V =  ~o* 

in which 

~c9" ~- [aC* + MI(C*)].6L 

is the total amount of the sample loaded. 
Eqn. A7 can be considered as a boundary condition that eqn. A4 has to 

satisfy when L = 0 and V > 0. Another condition is that 

C = 0 (A8) 

when V ~- 0 and L > 0. Under these conditions, eqn. A4 becomes 

{ 1 [V- - ( a -4 -M~)  . L ] } [ V ~ ( a + M ~ ) . L ] I  C : C * e x p  -- ( a ÷ M ~ ) - 6 L  (A9) 

C----0 [ V < ( a - k - M ~ )  L] 

where it should be noted that eqn. A9 has been derived following a principle such 
that the initial step of the development is a spreading of the initial band (see eqn. A5) 
and, therefore, that the continuity equation (eqn. A1 or A3) can be applied immedi- 
ately after the spreading has begun, as eqn. A1 is valid only when the band of mole- 
cules is broad (see text) **. It can be verified that eqn. A9 fulfils another conservation 
condition: 

f (a + M ~ ) - =  CdL 6o~* 
~ o O  

in which (a + Me)" C is the total amount of solute per unit length of the column 
and the integration is carried out for a fixed value of V. The range of the integration 
has been taken as (--c~, c~) instead of (0, c~) because, in the latter calculation, the 
amount of solute that is still in the top section of the column, 0L, is not integrated. 
Fig. A1 is the plot of C versus V, which gives the theoretical chromatogram available 
for a column of length L and explains reasonably well the general shape of the 
experimental chromatogram. 

The only difference between the present and the classical theory concerns a 
boundary condition for eqn. A4. In the classical theory, a boundary condition such 

* The value of  6L must also be independent of  the flow-rate, as the shape or the width of the 
experimental chromatogram is independent of  the flow-rate (cf. footnote on p. 280). 

** It should be noted that the situation is the same if a column with the moving band of solute 
with a large width is connected to the top o f  the column under consideration, in place of  the initial 
band. 
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k 
O 

0 
V= (~ + M ~)L V 

Fig. A1. Representation (in arbitrary units) of a theoretical chromatogram for a column of length L 
in the case of small loads. The chromatogram moves on the abscissa with a change in the L value. 
The shape of the chromatogram, however, is independent of L. 

that  C = 0 has been applied instead o f  eqn. A7 when L ---- 0 and V > 0. It  is impor- 
tant to see that  the classical boundary  condit ion is valid only if eqn. A1 or  A3 can 
be applied in the interior o f  the initial band, i.e., if the section 6L can be divided into 
a large number  o f  sub-sections through which the t ransport  o f  solute is carried out 
smoothly, which, however, is impossible if the value of  6L is small enough (see text). 

According to the classical theory, if the adsorpt ion isotherm of  the solute is 
linear and if the elution is carried out  by using the same buffer as the solvent of  the 
sample solution, the shape of  the ch romatogram has to be a rectangle with the same 
width as the initial band. In ref. 3, it is also mentioned that  a rectanglar chromato-  
gram with the same width as the initial band  has to be realized even when the elution 
is carried out  by using a new solvent. This statement is not  true, as point  1 o f  eqn. 10 
in ref. 3 is not  correct  when a new solvent is used. I t  is evident that  point  1 o f  eqn. 10 
in ref. 3 cannot  express a state such that  the solvent in the upper  hal f  of  the initial 
band is new and that  in the lower half  it is old, while in the case o f  infinitesimal loads, 
the shape of  the chromatogram does not  depend on whether the buffer is changed or 
not for the elution. 

Finally, it should be added that  there are several kinetic theories that  explain 
the spreading of  the molecular zone on the column or the tailing o f  the chromatogram 
in the case o f  a linear adsorpt ion isothermlZ, ~3. These theories cannot  be applied, 
however, at least to H A  chromatography in which the shape of  the chromatogram is 
virtually independent  of  the flow-rate. 
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